Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Part Fibre Toxicol ; 21(1): 19, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600504

ABSTRACT

BACKGROUND: Recently, carbon quantum dots (CQDs) have been widely used in various fields, especially in the diagnosis and therapy of neurological disorders, due to their excellent prospects. However, the associated inevitable exposure of CQDs to the environment and the public could have serious severe consequences limiting their safe application and sustainable development. RESULTS: In this study, we found that intranasal treatment of 5 mg/kg BW (20 µL/nose of 0.5 mg/mL) CQDs affected the distribution of multiple metabolites and associated pathways in the brain of mice through the airflow-assisted desorption electrospray ionization mass spectrometry imaging (AFADESI-MSI) technique, which proved effective in discovery has proven to be significantly alerted and research into tissue-specific toxic biomarkers and molecular toxicity analysis. The neurotoxic biomarkers of CQDs identified by MSI analysis mainly contained aminos, lipids and lipid-like molecules which are involved in arginine and proline metabolism, biosynthesis of unsaturated fatty acids, and glutamine and glutamate metabolism, etc. as well as related metabolic enzymes. The levels or expressions of these metabolites and enzymes changed by CQDs in different brain regions would induce neuroinflammation, organelle damage, oxidative stress and multiple programmed cell deaths (PCDs), leading to neurodegeneration, such as Parkinson's disease-like symptoms. This study enlightened risk assessments and interventions of QD-type or carbon-based nanoparticles on the nervous system based on toxic biomarkers regarding region-specific profiling of altered metabolic signatures. CONCLUSION: These findings provide information to advance knowledge of neurotoxic effects of CQDs and guide their further safety evaluation.


Subject(s)
Neurotoxicity Syndromes , Quantum Dots , Mice , Animals , Quantum Dots/toxicity , Carbon/toxicity , Carbon/chemistry , Metabolomics/methods , Brain , Neurotoxicity Syndromes/etiology , Biomarkers
2.
NanoImpact ; 34: 100505, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38579989

ABSTRACT

The increasing application of quantum dots (QDs) increases interactions with organisms. The inflammatory imbalance is a significant manifestation of immunotoxicity. Macrophages maintain inflammatory homeostasis. Using macrophages differentiated by phorbol 12-myristate 13-acetate-induced THP-1 cells as models, the study found that low-dose (5 µM) cadmium telluride QDs (CdTe-QDs) hindered monocyte-macrophage differentiation. CD11b is a surface marker of macrophage, and the addition of CdTe-QDs during induction resulted in a decrease in CD11b expression. Moreover, exposure of differentiated THP-1 macrophage (dTHP-1) to 5 µM CdTe-QDs led to the initiation of M1 polarization. This was indicated by the increased surface marker CD86 expression, along with elevated level of NF-κB and IL-1ß proteins. The potential mechanisms are being explored. The transcription factor EB (TFEB) plays a significant role in immune regulation and serves as a crucial regulator of the autophagic lysosomal pathway. After exposed to CdTe-QDs, TFEB activation-mediated autophagy and M1 polarization were observed to occur simultaneously in dTHP-1. The mTOR signaling pathway contributed to TFEB activation induced by CdTe-QDs. However, mTOR-independent activation of TFEB failed to promote M1 polarization. These results suggest that mTOR-TFEB is an advantageous target to enhance the biocompatibility of CdTe-QDs.

3.
Food Chem Toxicol ; 186: 114577, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38458532

ABSTRACT

Silver nanoparticles (AgNPs) have been widely used in biomedicine and cosmetics, increasing their potential risks in neurotoxicity. But the involved molecular mechanism remains unclear. This study aims to explore molecular events related to AgNPs-induced neuronal damage by RNA-seq, and elucidate the role of Ca2+/CaMKII signal and Drp1-dependent mitochondrial disorder in HT22 cells synaptic degeneration induced by AgNPs. This study found that cell viabilities were decreased by AgNPs in a dose/time-dependent manner. AgNPs also increased protein expression of PINK1, Parkin, synaptophysin, and inhibited PGC-1α, MAP2 and APP protein expression, indicating AgNPs-induced synaptic degeneration involved in disturbance of mitophagy and mitochondrial biogenesis in HT22 cells. Moreover, inhibition of AgNPs-induced Ca2+/CaMKII activation and Drp1/ROS rescued mitophagy disturbance and synaptic degeneration in HT22 cells by reserving aforementioned protein express changes except for PGC-1α and APP protein. Thus, AgNPs-induced synaptic degeneration was mediated by Ca2+/CaMKII signal and Drp1-dependent mitochondrial disorder in HT22 cells, and mitophagy is the sensitive to the mechanism. Our study will provide in-depth molecular mechanism data for neurotoxic evaluation and biomedical application of AgNPs.


Subject(s)
Metal Nanoparticles , Mitochondrial Diseases , Humans , Silver/toxicity , Silver/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Mitochondria/metabolism , Metal Nanoparticles/toxicity
4.
Environ Toxicol Pharmacol ; 106: 104385, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38340909

ABSTRACT

Generated from plastics, microplastics (MPs) and nanoplastics (NPs) are difficult to completely degrade in the natural environment, which can accumulate in almost all lives. Liver is one of the main target organs. In this study, HepG2 and L02 cells were exposed to 0-50 µg/mL polystyrene (PS)-NPs to investigate the mechanism of mitochondrial damage and inflammation. The results showed mitochondria damage and inflammatory caused by NPs, and it can be inhibited by N-acetyl-L-cysteine (NAC). In addition, reactive oxygen species (ROS) activated nuclear factor erythroid-derived factor 2-related factor (Nrf2) pathway. Nrf2 siRNA exacerbated the injury, suggesting Nrf2 plays a protective role. Moreover, p62 siRNA increased ROS and mitochondrial damage by inhibiting Nrf2, but didn't affect the inflammation. In conclusion, Nrf2 was activated by ROS and played a protective role in PS-NPs-mediated hepatotoxicity. This study supplemented the data of liver injury caused by PS-NPs, providing a basis for the safe disposal of plastics.


Subject(s)
Plastics , Polystyrenes , Humans , Polystyrenes/toxicity , Hep G2 Cells , Microplastics , NF-E2-Related Factor 2 , Reactive Oxygen Species , Oxidative Stress , Inflammation/chemically induced , RNA, Small Interfering
5.
Sci Total Environ ; 912: 168739, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38008311

ABSTRACT

Currently, nanoparticles (NPs) are extensively applied in the diagnosis and treatment of neurodegenerative diseases (NDs). With the rapid development and increasing exposure to the public, the potential neurotoxicity associated with NDs caused by NPs has attracted the researchers' attentions but their biosafety assessments are still far behind relevant application studies. Based on recent research, this review aims to conduct a comprehensive and systematic analysis of neurotoxicity induced by NPs. The 191 studies selected according to inclusion and exclusion criteria were imported into the software, and the co-citations and keywords of the included literatures were analyzed to find the breakthrough point of previous studies. According to the available studies, the routes of NPs entering into the normal and injured brain were various, and then to be distributed and accumulated in living bodies. When analyzing the adverse effects induced by NPs, we focused on multiple programmed cell deaths (PCDs), especially ferroptosis triggered by NPs and their tight connection and crosstalk that have been found playing critical roles in the pathogenesis of NDs and their underlying toxic mechanisms. The activation of multiple PCD pathways by NPs provides a scientific basis for the occurrence and development of NDs. Furthermore, the adoption of new methodologies for evaluating the biosafety of NPs would benefit the next generation risk assessment (NGRA) of NPs and their toxic interventions. This would help ensure their safe application and sustainable development in the field of medical neurobiology.


Subject(s)
Nanoparticles , Nanoparticles/toxicity , Brain/metabolism , Oxidative Stress , Risk Assessment , Apoptosis
6.
Sci Total Environ ; 901: 165875, 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-37517725

ABSTRACT

The controlled synthesis of silver nanoparticles (AgNPs) decorated TiO2 nanohybrids (Ag/TiO2) for photocatalysis has received considerable attention. These photocatalysts are widely used in environment and energy, resulting in human exposure through inhalation. Pure TiO2 is generally considered a low-toxic nanomaterial. However, little is known about the toxicity after AgNPs loading. In this study, silver-decorated TiO2 nanohybrids were controllably synthesized by the photodeposition method, and their toxic effects on murine lung and human lung epithelial cells were explored. As a result, silver loading significantly enhanced the effect of TiO2 photocatalyst on EMT in lung epithelial cells, potentially acting as a pro-fibrogenic effect in murine lung. Meanwhile, the increase in autophagy vacuoles, LC3-II marker, stub-RFP-sens-GFP-LC3 fluorescence assay, and LC3 turnover assay showed that silver loading also significantly increased autophagy flux. Furthermore, analysis of autophagy inhibition by 3-Methyladenine indicated that the promotion of EMT by silver loading was related to the increased autophagy flux. Intriguingly, the autophagy and EMT biological effects could be alleviated when the silver loading amount was reduced or silver particle size was increased, and the enhanced pro-fibrogenic effect was mitigated at the same time. This study supplemented safety information of Ag-decorated TiO2 nanohybrids and provided methods of controlled synthesis for reducing toxicity.

7.
Biomedicines ; 11(6)2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37371704

ABSTRACT

Cerebrospinal fluid (CSF) is an important sample source for diagnosing diseases in the central nervous system (CNS), but collecting and injecting CSF in small animals is technically challenging and often results in high mortality rates. Here, we present a cost-effective and efficient method for accessing the CSF in live rodents for fluid collection and infusion purposes. The key element of this protocol is a metal needle tool bent at a unique angle and length, allowing the successful access of the CSF through the foramen magnum. With this method, we can collect 5-10 µL of the CSF from mice and 70-100 µL from rats for downstream analyses, including mass spectrometry. Moreover, our minimally-invasive procedure enables iterative CSF collection from the same animal every few days, representing a significant improvement over prior protocols. Additionally, our method can be used to inject solutions into mice cisterna magna with high success rates and high postoperative recovery rates. In summary, we provide an efficient and minimally-invasive protocol for collecting and infusing reagents into the CSF in live rodents. We envision this protocol will facilitate biomarker discovery and drug development for diseases in the central nervous system.

8.
Sci Total Environ ; 879: 163166, 2023 Jun 25.
Article in English | MEDLINE | ID: mdl-37011691

ABSTRACT

Quantum dots (QDs) are zero-dimension nanomaterials with excellent physical and chemical properties, which have been widely used in environmental science and biomedicine. Therefore, QDs are potential to cause toxicity to the environment and enter organisms through migration and bioenrichment effects. This review aims to provide a comprehensive and systematic analysis on the adverse effects of QDs in different organisms based on recently available data. Following PRISMA guidelines, this study searched PubMed database according to the pre-set keywords, and included 206 studies according to the inclusion and elimination criteria. CiteSpace software was firstly used to analyze the keywords of included literatures, search for breaking points of former studies, and summarize the classification, characterization and dosage of QDs. The environment fate of QDs in the ecosystems were then analyzed, followed with comprehensively summarized toxicity outcomes at individual, system, cell, subcellular and molecular levels. After migration and degradation in the environment, aquatic plants, bacteria, fungi as well as invertebrates and vertebrates have been found to be suffered from toxic effects caused by QDs. Aside from systemic effects, toxicity of intrinsic QDs targeting to specific organs, including respiratory system, cardiovascular system, hepatorenal system, nervous system and immune system were confirmed in multiple animal models. Moreover, QDs could be taken up by cells and disturb the organelles, which resulted in cellular inflammation and cell death, including autophagy, apoptosis, necrosis, pyroptosis and ferroptosis. Recently, several innovative technologies, like organoids have been applied in the risk assessment of QDs to promote the surgical interventions of preventing QDs' toxicity. This review not only aimed at updating the research progress on the biological effects of QDs from environmental fate to risk assessment, but also overcame the limitations of available reviews on basic toxicity of nanomaterials by interdisciplinarity and provided new insights for better applications of QDs.


Subject(s)
Quantum Dots , Animals , Quantum Dots/toxicity , Quantum Dots/chemistry , Ecosystem , Respiratory System , Apoptosis , Models, Biological
10.
Antioxid Redox Signal ; 39(1-3): 59-78, 2023 07.
Article in English | MEDLINE | ID: mdl-36974367

ABSTRACT

Significance: Ferroptosis is featured by the accumulation of polyunsaturated-lipid peroxidation on cellular membranes in an iron-dependent manner. Ferroptosis has been implicated in various pathophysiological processes, including cancer, neurodegeneration, and ischemia-reperfusion tissue injury. However, our understanding about the dynamic and context-specific regulation of ferroptosis remains incomplete. Recent Advances: As the major substrate for peroxidation, the cellular lipidome regulates ferroptosis sensitivity and execution by controlling the abundance and availability of polyunsaturated-lipids for peroxidative modifications. In turn, the cellular lipidome is regulated by a complex network of enzymes and transporters, as well as upstream layers of receptors, kinases, and transcription factors. A number of research has shed light on the link between lipid metabolism and ferroptosis. Here, we summarize our current knowledge on the role of the lipidome and associated protein regulators in various stages of ferroptosis, ranging from initiation, execution to cell death evasion by cells experiencing ferroptotic stress. Critical Issues: This review provides an overview of the mechanisms underlying lipid peroxidation and ferroptosis by discussing the lipid species that directly contribute to lipid peroxidation and ferroptosis, how cells regulate the abundances of these pro-ferroptosis lipids, how lipid peroxidation causes cell death, and how cells prevent and repair membrane lipid damage under ferroptotic conditions. Future Directions: Cell fate regulation in vivo could be different from in vitro culture settings. We envision that a comprehensive and detailed understanding about these important questions in the dynamic regulation of ferroptosis in vivo will accelerate our development of ferroptosis-targeted therapies to improve human health.


Subject(s)
Ferroptosis , Reperfusion Injury , Humans , Lipid Metabolism , Lipid Peroxidation , Cell Death , Lipids
11.
Chem Biol Interact ; 369: 110287, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36471531

ABSTRACT

Silver nanoparticles (AgNPs) are widely used in various fields such as industry, agriculture, and medical care because of their excellent broad-spectrum antibacterial activity. However, their extensive use has raised concerns about their health risks. Liver is one of the main target organs for the accumulation and action of AgNPs. Therefore, evaluating the toxic effects of AgNPs on liver cells and its mechanisms of action is crucial for the safe application of AgNPs. In the study, polyvinylpyrrolidone (PVP)-coated AgNPs were characterized. The human hepatoma cell line (HepG2) and the normal hepatic cell line (L02) were exposed to different concentrations of AgNPs (20-160 µg/mL) and pretreated with the addition of N-acetylcysteine (NAC) or by Nrf2 siRNA transfection. NAC was able to inhibit the concentration-dependent increase in the level of apoptosis induced by AgNPs in HepG2 cells and L02 cells. Interestingly, HepG2 cells were more sensitive to AgNPs than L02 cells, and this may be related to the different ROS generation and responses to AgNPs by cancer cells and normal cells. In addition, NAC also alleviated the imbalance of antioxidant system and cell cycle arrest, which may be related to AgNPs-induced DNA damage and autophagy. The knockdown of nuclear factor erythroid-derived factor 2-related factor (Nrf2) found that AgNPs-induced ROS and apoptosis levels were further upregulated, but the cell cycle arrest was alleviated. On the whole, Nrf2 exerts a protective role in AgNPs-induced hepatotoxicity. This study complements the hepatotoxicity mechanisms of AgNPs and provides data for a future exploration of AgNPs-related anti-hepatocellular carcinoma drugs.


Subject(s)
Chemical and Drug Induced Liver Injury , Metal Nanoparticles , Humans , Reactive Oxygen Species/metabolism , Silver/toxicity , NF-E2-Related Factor 2/metabolism , Metal Nanoparticles/toxicity , Oxidative Stress , Acetylcysteine/pharmacology , Hep G2 Cells
12.
Food Chem Toxicol ; 170: 113469, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36243218

ABSTRACT

Silver nanoparticles (AgNPs) have been incorporated in many consumer and biomedical products. Serious concerns have been expressed about the environmental and public health risks caused by nanoparticles. In previous studies, we found that AgNPs induced microglia polarization of the inflammatory phenotype. Autophagy was a critical for AgNPs-induced neuroinflammation. In the present study, we evaluated in detail the effects of AgNPs in different stages of the autophagy process, and we found that AgNPs induced neuroinflammatory responses and autophagic flux blockage both in the mouse brain and BV2 cells. AgNPs inhibited autophagosome-lysosome fusion and impaired the lysosomal functions by reducing the levels of lysosomal-associated membrane proteins, promoting lysosome membrane permeability and altering the lysosomal acidic microenvironment. These changes resulted in the defects in autophagic substrate clearance and subsequently led neuroinflammation. In addition, the elevation of autophagy could prevent the neuroinflammation induced by AgNPs. As a result, AgNPs hindered autophagic flux by inhibiting autophagosome fusion with lysosomes, thus aggravating the AgNPs-induced neurotoxicity. These findings will provide new insights to investigate the molecular mechanisms of neurotoxicity caused by AgNPs.


Subject(s)
Metal Nanoparticles , Silver , Mice , Animals , Silver/chemistry , Metal Nanoparticles/toxicity , Metal Nanoparticles/chemistry , Microglia , Lysosomes , Autophagy , Inflammation/chemically induced , Inflammation/metabolism
13.
Org Lett ; 24(40): 7465-7469, 2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36197129

ABSTRACT

Herein, a novel palladium-catalyzed regioselective diarylation/deamination of homoallylamines is described. During the process, a ubiquitous free amine (NH2) was used as the directing group to accomplish the regioselective δ,δ-diarylation and it was removed in situ to form the privileged 1,1,4,4-tetraaryl-1,3-butadiene motif. This chelate-controlled Heck-type approach eliminates the traditional need of preinstalled and hard removable directing groups, proceeds under simple conditions, and exhibits good tolerance to a wide range of synthetically useful functional groups.

14.
Bull Environ Contam Toxicol ; 109(2): 279-285, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35670839

ABSTRACT

Silver selenide quantum dots (Ag2Se QDs), as a novel type of QDs, are valuable in the biomedical application due to their low-toxic and excellent optical property in near infrared region, but the biosafety assessment of Ag2Se QDs is rare. In this study, the findings suggested that the accumulation of Ag2Se QDs in the body of nematodes decreased the lifespan and damaged normal neurobehaviors of Caenorhabditis elegan (C. elegans). Furthermore, Ag2Se QDs caused excessive reactive oxygen species (ROS) productions and altered expressions of several genes associated with redox equilibrium, which might contribute to neurotoxic outcomes in nematode C. elegans. According to this study, it is necessary and important for researchers to pay attention to the biosafety assessment of presumed low-toxic nanomaterials, like Ag2Se QDs, especially on sensitively toxic targets, i.e. the nervous system.


Subject(s)
Quantum Dots , Animals , Caenorhabditis elegans/physiology , Nervous System/metabolism , Quantum Dots/toxicity , Reactive Oxygen Species/metabolism
15.
Food Chem Toxicol ; 166: 113227, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35697184

ABSTRACT

Silver nanoparticles (AgNPs) could accumulate in the central nervous system (CNS) and induce neurotoxicity for their widespread use in industry and medicine. Mitochondria are vulnerable to toxicity of AgNPs, however, their role in the neurotoxicity remains unclear. This study aimed to evaluate AgNPs-induced synaptic degeneration in mouse hippocampal neurons (at a dose of 12-120 mg/kg BW via intravenous injection), and to further investigate mechanism of mitophagy, mitochondrial biogenesis process in the neurotoxicity. The results indicated that AgNPs accumulated in mouse hippocampal neurons and induced neurological deficits of learning and memory, which involved in synaptic degeneration accompanied with mitochondrial damage. Mechanistically, AgNPs exposure increased protein expression of PTEN-induced kinase 1 (PINK1), Parkin and inhibited peroxisome proliferator-activated receptor coactivator 1 alpha (PGC-1α) protein expression, caused disturbed mitophagy and mitochondrial biogenesis. AgNPs also induced synaptic damage by increasing the protein expression of synaptophysin and decreasing PSD95, MAP2 protein expression. AgNPs exposure even promoted protein expression of amyloid precursor protein (APP) using in amyloid-ß (Aß) cleavage. Furthermore, AgNPs induced hippocampal neuronal synaptic degeneration, mitophagy and mitochondrial biogenesis is dependent on particle-specific AgNPs rather than released silver ions. Our research could provide insights into the regulatory mechanisms of AgNPs-induced neurotoxicity. This study will shed the light of neurotoxicological evaluation of nanoparticles and possible early warning of biomedical applications.


Subject(s)
Metal Nanoparticles , Neurotoxicity Syndromes , Animals , Hippocampus/metabolism , Metal Nanoparticles/toxicity , Mice , Mitophagy , Neurons/metabolism , Neurotoxicity Syndromes/metabolism , Organelle Biogenesis , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Silver/metabolism , Silver/toxicity
16.
NanoImpact ; 25: 100367, 2022 01.
Article in English | MEDLINE | ID: mdl-35559897

ABSTRACT

Despite the potential of cadmium telluride quantum dots (CdTe QDs) in bioimaging and drug delivery, their toxic effects have been documented. It is known that the immunotoxicity of CdTe QDs targeting macrophages is one of their adverse effects, and the protein corona (PC) will affect the biological effects of QDs. In order to prove whether the PC-CdTe QDs complexes could alleviate the toxicity of CdTe QDs without weakening their luminescence, we investigated the impact of protein corona formed in fetal bovine serum (FBS) on the cytotoxicity of CdTe QDs to mitochondria. RAW264.7 cells were used as the model to compare the effects of CdTe QDs and PC-CdTe QDs complexes on the structure, function, quantity, morphology, and mitochondrial quality control of mitochondria. As result, the protein corona form in FBS alleviated the inhibition of CdTe QDs on mitochondrial activity, the damage to mitochondrial membrane, the increase of ROS, and the reduction of ATP content. Also, CdTe QDs increased the number of mitochondria in macrophages, while the complexes did not. In line with this, the morphology of mitochondrial network in macrophages which were exposed to CdTe QDs and PC-CdTe QDs complexes was different. CdTe QDs transformed the network into fragments, punctuations, and short rods, while PC-CdTe QDs complexes made the mitochondrial network highly branched, which was related to the imbalance of mitochondrial fission and fusion. Mechanically, CdTe QDs facilitated mitochondrial fission and inhibited mitochondrial fusion, while protein corona reversed the phenomenon caused by QDs. Besides mitochondrial dynamics, mitochondrial biogenesis and mitophagy were also affected. CdTe QDs increased the expression of mitochondrial biogenesis signaling molecules including PGC-1α, NRF-1 and TFAM, while PC-CdTe QDs complexes played the opposite role. With regard to mitophagy, they both showed promoting effect. In conclusion, the formation of protein corona alleviated the toxic effects of CdTe QDs on the mitochondria in macrophages and affected mitochondrial quality control. Under the premise of ensuring the fluorescence properties of CdTe QDs, these findings provided useful insight into reducing the toxicity of CdTe QDs from two perspectives: protein corona and mitochondria, and shared valuable information for the safe use of QDs.


Subject(s)
Cadmium Compounds , Protein Corona , Quantum Dots , Cadmium Compounds/toxicity , Macrophages , Mitochondria , Quantum Dots/toxicity , Tellurium/toxicity
17.
Environ Pollut ; 305: 119236, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35367502

ABSTRACT

In recent years, the cardiovascular toxicity of urban fine particulate matter (PM2.5) has sparked significant alarm. Mitochondria produce 90% of ATP and make up 30% of the volume of cardiomyocytes. Thus knowledge of myocardial mitochondrial dysfunction due to PM2.5 exposure is essential for further cardiotoxic effects. Here, the mechanism of PM2.5-induced cardiac hypertrophy through calcium overload and mitochondrial dysfunction was investigated in vivo and in vitro. Male and female BALB/c mice were given 1.28, 5.5, and 11 mg PM2.5/kg bodyweight weekly through oropharyngeal inhalation for four weeks and were assigned to low, medium, and high dose groups, respectively. PM2.5-induced myocardial edema and cardiac hypertrophy were detected in the high-dose group. Mitochondria were scattered and ruptured with abnormal ultrastructural morphology. In vitro experiments on human cardiomyocyte AC16 showed that exposure to PM2.5 for 24 h caused opened mitochondrial permeability transition pore --leading to excessive calcium production, decreased mitochondrial membrane potential, weakened mitochondrial respiratory metabolism capacity, and decreased ATP production. Nevertheless, the administration of calcium chelator ameliorated the mitochondrial damage in the PM2.5-treated group. Our in vivo and in vitro results confirmed that calcium overload under PM2.5 exposure triggered mTOR/AKT/GSK-3ß activation, leading to mitochondrial bioenergetics dysfunction and cardiac hypertrophy.


Subject(s)
Cardiomyopathies , Particulate Matter , Adenosine Triphosphate/metabolism , Animals , Calcium/metabolism , Cardiomegaly/chemically induced , Female , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3 beta/pharmacology , Humans , Male , Membrane Potential, Mitochondrial , Mice , Myocytes, Cardiac , Particulate Matter/metabolism
18.
Part Fibre Toxicol ; 19(1): 22, 2022 03 24.
Article in English | MEDLINE | ID: mdl-35331277

ABSTRACT

BACKGROUND: Along with the wild applications of nitrogen-doped graphene quantum dots (N-GQDs) in the fields of biomedicine and neuroscience, their increasing exposure to the public and potential biosafety problem has gained more and more attention. Unfortunately, the understanding of adverse effects of N-GQDs in the central nervous system (CNS), considered as an important target of nanomaterials, is still limited. RESULTS: After we found that N-GQDs caused cell death, neuroinflammation and microglial activation in the hippocampus of mice through the ferroptosis pathway, microglia was used to assess the molecular mechanisms of N-GQDs inducing ferroptosis because it could be the primary target damaged by N-GQDs in the CNS. The microarray data suggested the participation of calcium signaling pathway in the ferroptosis induced by N-GQDs. In microglial BV2 cells, when the calcium content above the homeostatic level caused by N-GQDs was reversed, the number of cell death, ferroptosis alternations and excessive inflammatory cytokines release were all alleviated. Two calcium channels of L-type voltage-gated calcium channels (L-VGCCs) in plasma membrane and ryanodine receptor (RyR) in endoplasmic reticulum (ER) took part in N-GQDs inducing cytosolic calcium overload. L-VGCCs and RyR calcium channels were also involved in promoting the excess iron influx and triggering ER stress response, respectively, which both exert excessive ROS generation and result in the ferroptosis and inflammation in BV2 cells. CONCLUSION: N-GQDs exposure caused ferroptosis and inflammatory responses in hippocampus of mice and cultured microglia through activating two calcium channels to disrupt intracellular calcium homeostasis. The findings not only posted an alert for biomedical applications of N-GQDs, but also highlighted an insight into mechanism researches of GQDs inducing multiple types of cell death in brain tumor therapy in the future.


Subject(s)
Ferroptosis , Graphite , Quantum Dots , Calcium , Calcium Channels , Graphite/toxicity , Homeostasis , Microglia , Nitrogen , Quantum Dots/toxicity
19.
Food Chem Toxicol ; 163: 112971, 2022 May.
Article in English | MEDLINE | ID: mdl-35358666

ABSTRACT

Graphene quantum dots (GQDs), as a novel graphene-based nanoparticle, presented a bright prospect in fields of biomedicine due to their excellent optical property. However, the biosafety assessment of GQDs is far behind their rapid development, which could restrict their wilder applications. This study focused on the potential adverse effects of two kinds of promising GQDs, i.e. nitrogen-doping graphene quantum dots (N-GQDs) and amino-modified graphene quantum dot (A-GQDs) on primary target organs of GNMs, including lung, liver and kidney. The intranasal instillation used here was to imitate the respiratory exposure of GQDs that is a commonly exposure route of GQDs in the environment. Although no severe damages associated with general health occurred in mice treated with GQDs, the fibrosis evidenced by statistically significant increases in the area of collagen I and TGF-ß1 and p-Smad3 expressions were observed in the lung, liver and kidney tissues. Interestingly, the fibrotic effect induced by GQDs could be effectively alleviated by a ferroptosis-specific inhibitor, which demonstrated a close relationship of fibrosis and ferroptosis. This study not only provides new insights on the toxicity mechanisms of GQDs, but also offers some efficient ways to control toxicity of GQDs, like dosage threshold and small molecular drugs.


Subject(s)
Graphite , Quantum Dots , Animals , Fibrosis , Graphite/toxicity , Kidney , Liver , Lung , Mice , Quantum Dots/toxicity
20.
J Appl Toxicol ; 42(5): 738-749, 2022 05.
Article in English | MEDLINE | ID: mdl-34708887

ABSTRACT

Fine particulate matter (PM2.5 )-induced detrimental cardiovascular effects have been widely concerned, especially for endothelial cells, which is the first barrier of the cardiovascular system. Among potential mechanisms involved, reactive oxidative species take up a crucial part. However, source of oxidative stress and its relationship with inflammatory response have been rarely studied in PM2.5 -induced endothelial injury. Here, as a key oxidase that catalyzes redox reactions, NADPH oxidase (NOX) was investigated. Human umbilical vein endothelial cells (EA.hy926) were exposed to Standard Reference Material 1648a of urban PM2.5 for 24 h, which resulted in NOX-sourced oxidative stress, endothelial dysfunction, and inflammation induction. These are manifested by the up-regulation of NOX, increase of superoxide anion and hydrogen peroxide, elevated endothelin-1 (ET-1) and asymmetric dimethylarginine (ADMA) level, reduced nitric oxide (NO) production, and down-regulation of phosphorylation of endothelial NO synthase (eNOS) with increased levels of inducible NO synthase, as well as the imbalance between tissue-type plasminogen activator (tPA) and plasminogen activator inhibitor 1 (PAI-1), and changes in the levels of pro-inflammatory and anti-inflammatory factors. However, administration of NOX1/4 inhibitor GKT137831 alleviated PM2.5 -induced elevated endothelial dysfunction biomarkers (NO, ET-1, ADMA, iNOS, and tPA/PAI-1), inflammatory factors (IL-1ß, IL-10, and IL-18), and adhesion molecules (ICAM-1, VCAM-1, and P-selectin) and also passivated NOX-dependent AKT and eNOS phosphorylation that involved in endothelial activation. In summary, PM2.5 -induced NOX up-regulation is the source of ROS in EA.hy926, which activated AKT/eNOS/NO signal response leading to endothelial dysfunction and inflammatory damage in EA.hy926 cells.


Subject(s)
NADPH Oxidases , Nitric Oxide , Human Umbilical Vein Endothelial Cells , Humans , Particulate Matter/toxicity , Plasminogen Activator Inhibitor 1/pharmacology , Proto-Oncogene Proteins c-akt , Reactive Oxygen Species
SELECTION OF CITATIONS
SEARCH DETAIL
...